Браузеры. Программы. Социальные сети. Сервисы

Браузеры. Программы. Социальные сети. Сервисы

» » Что меньше микро. Нано технологии в медицине и в быту - HeSin

Что меньше микро. Нано технологии в медицине и в быту - HeSin

Префиксы к различным единицам измерения подчинены строгой системе (СИ). Такие приставки существуют, чтобы сокращать количество нулей до менее громоздкого значения.

Семь ключевых ячеек СИ:

  • Метры (м) – длина;
  • Килограммы (кг) – вес;
  • Секунды (с) – время;
  • Канделы (кд) – сила света;
  • Амперы (А) – сила электрического тока;
  • Моли (моль) – количество вещества;
  • Кельвины (К) – термодинамическая температура.

О приставке «кило»

  • Соответствует значению кратных десятичных единиц.
  • Присоединяется к наименованию исходного знака; последний, таким образом, умножается на 103, то есть на 1000.
  • В системе СИ «кило» как раз и обозначает 1000.
  • Название происходит от греческого «χίλιοι» – «тысяча».

Например, один килограмм равен одной тысяче граммов. Один километр – тысяче метров. Один килоджоуль – тысяче джоулей и т.д.

Приставка участвует в маркировке:

  • Массы;
  • Длины;
  • Площади;
  • Времени.

Префикс «санти» и «деци»

Префикс «санти»:

  • Используется для обозначения дольных десятичных единиц.
  • Присоединяется к названию определенного предмета, который затем умножается на 10−2. Новое значение, полученное после умножения, является одной сотой частью от исходного знака.
  • Наименование восходит к слову «centum» (лат.), что означает «сто».
  • Самый известный случай употребления в русском языке – обозначение сантиметра (одна сотая метра).

Приставка «деци»:

  • Участвует в обозначении дольных десятичных единиц.
  • Указывает на значение одной десятой, или 10−1.
  • Чаще всего употребляется с так называемыми «белами» (Б), образуя всем известные децибелы, которыми измеряют громкость звука.
  • Используется еще и в сочетании с простыми метрами и кубическими. Остальные случаи употребления в современном русском языке будут считаться ошибкой.

О префиксах «милли», «микро» и «нано»

Приставка “милли”:

  • Обозначает дольные десятичные единицы.
  • Указывает на единицу, равную одной тысячной от исходной.
  • Это самый известный префикс среди данной группы.
  • Чаще всего используется для измерения расстояния, объема и времени, но встречается и с такими показателями, как длина, масса, ускорение и другие.

Префиксы «микро» и «нано»:

  • Знаки с такими приставками равняются одной миллионной и одной миллиардной от исходного значения соответственно.
  • В переводе с греческого языка «микро» – маленький , а «нано» – карлик.
  • Показатели времени, массы, давления, длины, скорости и некоторых других измерений с этими приставками не используются.
  • Специальный знак, обозначающий «микро», есть в системе Юникод.

Как измеряется температура?

Основные системы:

  • Абсолютная шкала температуры Кельвина (нижний предел – абсолютный нуль).
  • Шкала Цельсия (цена делений равна кельвиновскому термометру)
  • Шкала Фаренгейта (нуль по Цельсию равняется тридцати двум градусам по Фаренгейту).

Значение «мега», «гига» и «тера»

“Мега” обозначает:

  • Результат умножения на один миллион.
  • Греческое слово μέγας означает «большой».
  • Чаще всего встречается в компьютерной сфере для обозначения скорости передачи данных (например, мегабит).
  • Используется для измерения площади и мощности.

Приставка «гига»:

  • Называет число, увеличенное в один миллиард раз.
  • «Гигант» – так переводится с греческого языка.
  • Префикс участвует в измерениях частоты в микро- и радиоэлектронике, объема информации на носителях.

Знак «тера»:

  • Присоединяется при умножении на один триллион.
  • Слово имеет значение «чудовище», или «ужасно много».
  • Использование идет в сфере технологий, обычно для указания на количество данных.
  • Тераваттами обозначается мощность лазеров.

Отличия в двоичном коде

Число 1000 и 1024 находятся в близости значения, поэтому двоичные и десятичные префиксы похожи друг на друга, за исключением небольшой разницы.

Последний слог десятичного знака меняется на «би».

  • Гибибайт – гигабайт;
  • Тебибайт – терабайт.

Измерение расстояния в разных странах

В Британии и Америке:

  • Самая известная единица – это дюйм. Он равен 2, 54 см.
  • Фут составляет 30, 48 см.
  • Ярд равняется 91, 44 см.
  • В одной миле чуть больше километра (1, 6 км).

В Японии:

  • 1 сун = 3 см;
  • 1 сяку = 30 см;
  • 1 кэн = 1, 82 м.

Самая большая часть – это ри. Она составляет 3 километра 927 метров.

Система морского флота:

  • Всем известная морская миля имеет различие. 1852 метра составляет международное значение и 1853,184 м – британское.
  • Морская сажень равна 1,8288 метрам, или 6 британским футам.

Астрономические приемы измерения

Радиус Луны, Земли, Солнца и некоторых других планет принят за постоянный показатель. Это 1737,10, 6371 и 6,9551·105 километров соответственно.

Особую группу составляют световая секунда, световая минута, световой час, световой год и другие аналогичные величины.

Так, префиксы, заключающие в себе определенное значение, облегчают понимание математических расчетов и устанавливают международный смысл тех или иных знаков для глобализации мировой науки.

Сокращённые обозначения эл.величин

При сборке электронных схем волей неволей приходится пересчитывать величины сопротивлений резисторов, ёмкостей конденсаторов, индуктивность катушек.

Так, например, возникает необходимость переводить микрофарады в пикофарады, килоомы в омы, миллигенри в микрогенри.

Как не запутаться в расчётах?

Если будет допущена ошибка и выбран элемент с неверным номиналом, то собранное устройство будет неправильно работать или иметь другие характеристики.

Такая ситуация на практике не редкость, так как иногда на корпусах радиоэлементов указывают величину ёмкости в нано фарадах (нФ), а на принципиальной схеме ёмкости конденсаторов, как правило, указаны в микро фарадах (мкФ) и пико фарадах (пФ). Это вводит многих начинающих радиолюбителей в заблуждение и как следствие тормозит сборку электронного устройства.

Чтобы данной ситуации не происходило нужно научиться простым расчётам.

Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах нужно ознакомиться с таблицей размерности. Уверен, она вам ещё не раз пригодиться.

Данная таблица включает в себя десятичные кратные и дробные (дольные) приставки. Международная система единиц, которая носит сокращённое название СИ , включает шесть кратных (дека, гекто, кило, мега, гига, тера) и восемь дольных приставок (деци, санти, милли, микро, нано, пико, фемто, атто). Многие из этих приставок давно используются в электронике.

Множитель

Приставка

Наименование

Сокращённое обозначение

международное

1000 000 000 000 = 10 12

Тера

1000 000 000 = 10 9

Гига

1000 000 = 10 6

Мега

1000 = 10 3

кило

100 = 10 2

Гекто

10 = 10 1

дека

0,1 = 10 -1

деци

0,01 = 10 -2

санти

0,001 = 10 -3

милли

0,000 001 = 10 -6

микро

0,000 000 001 = 10 -9

нано

0,000 000 000 001 = 10 -12

пико

0,000 000 000 000 001 = 10 -15

фемто

0,000 000 000 000 000 001 = 10 -18

атто

Как пользоваться таблицей?

Как видим из таблицы, разница между многими приставками составляет ровно 1000. Так, например, такое правило действует между кратными величинами, начиная с приставки кило- .

  • Мега - 1 000 000

    Гига – 1 000 000 000

    Тера – 1 000 000 000 000

Так, если рядом с обозначением резистора написано 1 Мом (1 Мега ом), то его сопротивление составит – 1 000 000 (1 миллион) Ом. Если же имеется резистор с номинальным сопротивлением 1 кОм (1 кило ом), то в Омах это будет 1000 (1 тысяча) Ом.

Для дольных или по-другому дробных величин ситуация похожа, только происходит не увеличение численного значения, а его уменьшение.

Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах, нужно запомнить одно простое правило. Нужно понимать, что милли, микро, нано и пико – все они отличаются ровно на 1000 . То есть если вам говорят 47 микрофарад, то это значит, что в нанофарадах это будет в 1000 раз больше – 47 000 нанофарад. В пикофарадах это уже будет ещё на 1000 раз больше – 47 000 000 пикофарад. Как видим, разница между 1 микрофарадой и 1 пикофарадой составляет 1 000 000 раз.

Также на практике иногда требуется знать значение в микрофарадах, а значение ёмкости указано в нанофарадах. Так если ёмкость конденсатора 1 нанофарада, то в микрофарадах это будет 0,001 мкф. Если ёмкость 0,01 мкф., то в пикофарадах это будет 10 000 пФ, а в нанофарадах, соответственно, 10 нФ.

Приставки, обозначающие размерность величины служат для сокращённой записи. Согласитесь проще написать 1мА , чем 0,001 Ампер или, например, 400 мкГн , чем 0,0004 Генри.

В показанной ранее таблице также есть сокращённое обозначение приставки. Так, чтобы не писать Мега , пишут только букву М . За приставкой обычно следует сокращённое обозначение электрической величины. Например, слово Ампер не пишут, а указывают только букву А . Также поступают при сокращении записи единицы измерения ёмкости Фарада . В этом случае пишется только буква Ф .

Наравне с сокращённой записью на русском языке, которая часто используется в старой радиоэлектронной литературе , существует и международная сокращённая запись приставок. Она также указана в таблице.

Ежедневно каждый из нас имеет дело с множеством цифр и чисел. Это и время на часах, температура воздуха за окном, и номера телефонов, и остатки денег в кошельке…

Но если привычных нам цифр (ср.-лат. cifra , от араб. sifr - нуль, буквально - пустой), этих условных знаков для обозначения чисел, всего десять (от 0 до 9), то самих чисел - величин, при помощи которых ведётся счёт - имеется великое множество.

Любопытно, но наряду с привычными для нас числами в некоторых областях человеческой деятельности используются и особые числа.

Так, в повседневной жизни число ½ нередко называют половиной, ⅓ - третью, а ¼ - четвертью, 1,5 - полутора, 2 - парой, 6 - полудюжиной, 12 - дюжиной, а 13 - чёртовой дюжиной.

В музыке число 1 имеет своё название - соло, 2 - дуэт, 3 - трио, 4 - квартет. 5 - квинтет, 6 - секстет. 7 - септет, 8 - октет, 9 - нонет.

Ну а в мире живых организмов число 2 нередко именуется двой-ней, 3 - тройней, а 4 - четвернёй.

Имеются свои названия и для обозначения чисел, полученных при возведении числа 10 в целую степень, которая стоит справа от него (например, 10 9), и показывает сколько раз его следует умножить само на себя.

Так, 10 2 имеет привычное для нас название сто, 10 3 - тысяча, 10 6 - миллион, 10 9 - миллиард, 10 12 - триллион, 10 15 - квадриллион , 10 18 - квинтиллион, 10 21 - секстиллион, 10 24 - септиллион, 10 27 - октиллион, 10 30 - нониллион, 10 33 - дециллион, а 10 100 - гугол.

Также в названиях многих величин употребляются приставки (префиксы), указывающие дольность или кратность этой величины.

семи-, геми-, деми- 1/2
уни 1
би-, ди- 2
три-, тер- 3
тетра-, тетр-, тессера-, вадр- 4
пент-, пента-, квинку-, каинке-, квинт- 5
секс-, секси-, гекс-, гекса- 6
гепт-, гепта-, септ-, септи-, септам- 7
окт-, окта, окто- 8
нон-, нона-, эннеа- 9
дек-, дека- 10
хендека-, угдек-, ундека- 11
додека- 12
квиндека- 15
икос-, икоса-, икост- 20

Как здесь не вспомнить такие слова как униформа, биметалл, тетраэдр, гептаэдр, октаэдр, декалитр, додекаэдр, икосаэдр. При этом многие из подобных слов относятся к математике, химии или технике.

Одними из наиболее узнаваемых приставок являются приставки степени числа 10, например, «кило», «мега», «гига» и «нано».

Так, речь современной «компьютерно продвинутой» молодёжи изобилует мега-, гига-, а то и терабайтами , в общении учёных и инженеров постоянно можно услышать о нанотехнологиях и микроэлектронике, ну а о привычных каждому из нас килограммах и миллиметрах можно даже не упоминать.

Ниже приведена таблица приставок как для кратных, так и для дольных единиц (кратные единицы - это единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины, а дольные - единицы, которые составляют определённую долю (часть) от установленной единицы измерения некоторой величины).

Дольность

дольность приставка пример
10 -1 деци дц - дециметр
10 -2 санти см - сантиметр
10 -3 милли мм - миллиметр
10 -6 микро мкм - микрометр
10 -0 нано нм - нанометр
10 -12 пико пФ - пикофарада
10-15 фемто фс - мемтосекунда
10-18 атто ас - аттосекунда
10-21 зепто зКл - зептокулон
10-24 иокто иг - иоктограмм

Кратность

кратность приставка пример
10 1 дека дал - декалитр
10 2 гекто га - гектар
10 3 кило кН - килоньютон
10 6 мега МВт - мегаватт
10 9 гига ГГц - гигагерц
10 12 тера ТВ - теравольт
10 15 пета Пфл - петафлопс
10 18 экса ЭБ - эксабайт
10 21 зетта ЗеВ - зетаэлектронвольт
10 24 йотта Иг - йоттаграмм
10 27 ксера Кдптр - ксерадиоптрия

Насколько велики или малы те или иные числа, можно судить хотя бы из следующих примеров.

Так, масса солнечной системы составляет «всего» 2·10 30 кг, планеты Земля - около 6·10 24 кг (т.е. 6 Икг), диаметр электрона - приблизительно 5,636·10 -15 м (или 5,636 фм), его заряд - чуть более 1,6·10 -19 Кл (или 160 зКл), а масса покоя электрона - около 9,11·10 -31 кг (или 0,000911 иг)!

Кстати, гугол (10 100) больше, чем количество атомов в известной нам части Вселенной, которых, по различным оценкам, насчитывается от 10 79 до 10 81 , что также ограничивает практическое применение этого числа.

Мир чисел удивителен и чрезвычайно познавателен. Казалось бы, человек уже посчитал всё, что только можно.

И было бы здорово, чтобы как можно чаще числа упоминались в связи с чем-то красивым и приятным, а не уродливым и опасным!

* В системе наименования чисел с так называемой длинной шкалой.

** В программировании и компьютерной промышленности приставки «кило», «мега», «гига», «тера» и т.д. в случае применения к величинам, кратным степеням двойки (например, байт), могут означать как кратность 1000, так и 1024=2 10 (соответственно обычно 1 мегабайт=1024 2 =2 20 =1 048 576 байт; 1 гигабайт=1024 3 =2 30 =1 073 741 824 байт; 1 терабайт=1024 4 =2 40 =1 099 511 627 776 байт).

Источники информации
1. Уникальная иллюстрированная энциклопедия в таблицах и схемах. - М.: Астрель, АСТ.
2. Перельман Я. И. Занимательная арифметика. - М.: Физматгиз, 1959.
3. Приставки СИ. Википедия.
4. Системы наименования чисел. Википедия.

И.О. Микулёнок , доктор технических наук, профессор, КПИ им. Игоря Сикорского

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 милли [м] = 1000 микро [мк]

Исходная величина

Преобразованная величина

без приставки йотта зетта экса пета тера гига мега кило гекто дека деци санти милли микро нано пико фемто атто зепто йокто

Метрическая система и Международная система единиц (СИ)

Введение

В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

Ранние системы измерений

В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами - поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

Меры длины

В Древнем Египте длина вначале измерялась просто локтями , а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

Локоть делили на более мелкие единицы: ладонь , рука , зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

Меры массы и веса

Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат . Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

Меры объема

Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема - вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

Эволюция различных систем мер

Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

Метрическая система

На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

Международная система единиц (СИ)

Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

Десятичные приставки

Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

Приставка Символ Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель - точка. Экспоненциальная запись
йотта Й 1 000 000 000 000 000 000 000 000 10 24
зетта З 1 000 000 000 000 000 000 000 10 21
экса Э 1 000 000 000 000 000 000 10 18
пета П 1 000 000 000 000 000 10 15
тера Т 1 000 000 000 000 10 12
гига Г 1 000 000 000 10 9
мега М 1 000 000 10 6
кило к 1 000 10 3
гекто г 100 10 2
дека да 10 10 1
без приставки 1 10 0
деци д 0,1 10 -1
санти с 0,01 10 -2
милли м 0,001 10 -3
микро мк 0,000001 10 -6
нано н 0,000000001 10 -9
пико п 0,000000000001 10 -12
фемто ф 0,000000000000001 10 -15
атто а 0,000000000000000001 10 -18
зепто з 0,000000000000000000001 10 -21
йокто и 0,000000000000000000000001 10 -24

Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок » выполняются с помощью функций unitconversion.org .

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 нано [н] = 1000 пико [п]

Исходная величина

Преобразованная величина

без приставки йотта зетта экса пета тера гига мега кило гекто дека деци санти милли микро нано пико фемто атто зепто йокто

Напряженность электрического поля

Метрическая система и Международная система единиц (СИ)

Введение

В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

Ранние системы измерений

В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами - поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

Меры длины

В Древнем Египте длина вначале измерялась просто локтями , а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

Локоть делили на более мелкие единицы: ладонь , рука , зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

Меры массы и веса

Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат . Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

Меры объема

Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема - вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

Эволюция различных систем мер

Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

Метрическая система

На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

Международная система единиц (СИ)

Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

Десятичные приставки

Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

Приставка Символ Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель - точка. Экспоненциальная запись
йотта Й 1 000 000 000 000 000 000 000 000 10 24
зетта З 1 000 000 000 000 000 000 000 10 21
экса Э 1 000 000 000 000 000 000 10 18
пета П 1 000 000 000 000 000 10 15
тера Т 1 000 000 000 000 10 12
гига Г 1 000 000 000 10 9
мега М 1 000 000 10 6
кило к 1 000 10 3
гекто г 100 10 2
дека да 10 10 1
без приставки 1 10 0
деци д 0,1 10 -1
санти с 0,01 10 -2
милли м 0,001 10 -3
микро мк 0,000001 10 -6
нано н 0,000000001 10 -9
пико п 0,000000000001 10 -12
фемто ф 0,000000000000001 10 -15
атто а 0,000000000000000001 10 -18
зепто з 0,000000000000000000001 10 -21
йокто и 0,000000000000000000000001 10 -24

Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок » выполняются с помощью функций unitconversion.org .